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A quantitative theory of the shape of absorption and emission curves for solute molecules dissolved 
in crystalline solvents based on the Franck-Condon principle is given. The relation between the 
radiationless transition and absorption or emission is discussed. 

Eine auf dem Franck-Condon-Prinzip basierende, quantitative Theorie fiir die Form yon Ab- 
sorptions- und Emissionslinien von Molekiilen in kristallinen L6sungsmitteln wird entwickelt und 
die Beziehung zwischen strahlungslosen IJberg~ingen und Absorption bzw. Emission diskutiert. 

Th6orie quantitative de la forme des courbes d'absorption et d'6mission, pour des mol6cules 
dissoutes dans des solvants cristallins, bas6e sur le principe de Franck-Condon. Discussion de la relation 
entre la transition non radiative et l'absorption ou l'6mission. 

t. Introduction 

Although the basic mechanism underlying the absorption and emission of 
light is clear, there has been little discussion of the shape of absorption and emission 
bands for an electronic transition of molecules in dense media. In this paper, 
we shall make quantitative investigation of the absorption coefficient and rate 
of spontaneous emission for all temperatures and frequencies on the basis of the 
Franck-Condon principle [-1] applied to the solute plus solvent molecules. The 
line broadening due to the resonance interactions [-2] among the solute moledules 
and due to the damping effect [-3] will be neglected in this investigation, but they 
can easily be included by generalizing the argument given in this discussion. 
We restrict our discussion to the system consisting of solute molecules of one 
species embedded in a crystalline solvent of another species. If, as with Moffit 
and Moscowitz [4], we consider each solute molecule in a liquid solvent to occupy 
a site within a locally rigid matrix of solvent molecules and its translation and 
rotational degrees of freedom to appear as librations, then our discussion can be 
applied to the case of light absorption or emission of molecules dissolved in a 
liquid solvent. 

In our previous investigations [5, 6], we discussed the radiationless transitions 
from the viewpoint of the non-stationary character of the Born-Oppenheimer 
approximation, and found that the radiationless transition probability depends 
very much on the modifications of the normal coordinates and frequencies of the 
two electronic states, and because of the lack of knowledge of normal coordinates 
and frequencies of local modes between the two electronic states in which the 
non-radiative transition occurs, it is difficult to carry out the calculations of the 
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radiationless transition probability accurately. In this investigation, it will be 
shown that the main difficulties involved in the calculation of the radiationless 
transition probability will be resolved if one carries out and analyzes the measure- 
ment of the light absorption or emission of the solute molecules dissolved in the 
crystalline solvent. It will also be shown that when there is an overlap of two or 
more absorption bands one can determine the absorption coefficient for each 
electronic transition as a function of frequency and by plotting the absorption 
coefficient against frequency one can obtain the oscillator strength for each elec- 
tronic transition. 

It is to be noticed that the band-shape function (see Eq. (5), next section) 
based on the Franck-Condon principle consists of a number of delta functions 
centered at various frequencies. As more vibrational modes of various frequencies 
are added, the average spacing between adjacent delta functions decrease, until 
ultimately the spacing becomes less than the band width of the spectrophotometer 
and the observed spectrum becomes continuous. 

2. General Formulation 

We consider a system consisting of a solute molecule embedded in the solvent 
molecular lattice. From time-dependent perturbation theory, the transition 
probability from the state (by') to a final state (av") due to absorption of light 
of frequency v is [7, 8, 9] 

2re [(av LeRtbv ) I 6(v,~,,,bv, v) (1) P(bv'~av")= ~ - O ( v )  ,, ~ ' 2 - -  

where e(v) represents the radiation density per unit frequency range and 6(x) is 
the delta function. The single and double primes designate the quantities belonging 
to the initial and final electronic states, respectively, a and b signify the electronic 
states, and v, the overall vibrational state. Vav,, b~' is the frequency for the transition 
between the state (av") and (b v'). The corresponding rate of light absorption is 
given by 4re a v 

R(bv'~av")= 3h ~(v) l(av"le~lbv')[ 2(~(Vav,,,bv,-~) (2) 

For T > 0, we have to include a Boltzmann factor to take care of the distribution 
of the population in the various vibrational levels. The absorption band is thus 
a series of bands that merge into a single broad one. Hence the total rate of light 
absorption is obtained by summing Eq. (2) over all initial vibrational states v' 
weighted by their Boltzmann factor Pb~' and then summing over all final vibrational 
states v" consistent with the conservation of energy: 

R ( b ~ a ) -  47c2v 3h O(v) ~ Pb,,,[(av"leRlbv')lz6(Vav,,,b~,--v) (3) 
I /v"  

where Pb~' is given by [10] 

Pb~' = I~Ii 2 slnn 2 ~ - )  exp kT -J' (4) 

Using the relation between the radiation density and the radiation intensity 
I(v) = acE(v), we obtain the molecular absorption coefficient kb~a(v): 

kb-,.(v)-- 4~2v 
3hac ~ Pb~' l( av" [e/~l bv'>[e,5(v.~.,,bv,--v) (5) 

v"  ty" 
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a is a function of refractive index n and is a correction due to the change in the 
volocity of light in the medium and due to an inhomogeneity of electric field in the 

9n 
solid. For example, if we use the Lorentz field [111, then a -  (2+n2) 2 In the 

adiabatic approximation, the state of the system is described by the product of 
the wave functions, 

~av,, = ~b~ Oa~,, and ~bv' = ~b Obv, (6) 

where ~a and ~b are the wave functions for the electrons of the system as though 
the nuclei were fixed in their instantaneous positions and O d  and Ob~, designate 
the wavefunctions of both intra- and intermolecular vibrations of the system. 
Substitution of Eq. (6) into Eq. (5) gives: 

kb"-'a(V)= 4~2~]/~abl2 2 Pbv'l(Oav"l[~)bv')]2(~(Vav",bv ' - v )  (7) 
3 h a c  v' 13" 

Here the Franck-Condon principle has been used. /~,b denotes the transition 
moment between the two electronic states: 

/~,b = (~ba ]e/~[ ~b).  (8) 

To evaluate the molecular absorption coefficient kb_~,(v), we approximate the 
vibrational wavefunctions by a product of harmonic-oscillator wavefunctions: 

N N 
0,~,, = I~ X,~'(QI'),  Ob~, = [~ Xbv~(Q'i) (9) 

i i 
where X,~, are the wavefunctions of harmonic oscillators and Qi denote the normal 
coordinates.To take into account the modifications of both normal coordinates 
and frequencies between the two electronic states, we can express them in general 

as follows [12] Q'i = Qi - d'i, Q'i' = Qi - di' (10) 
and 

col '=  o)i(I - ~,) (11) 

if the modifications are not very large. It should be noted that the anharmonicity 
in the potential curve is neglected here. This may cause some changes in the Franck- 
Condon factor in the cases where there are modifications of normal coordinates 
and frequencies, but the effect is higher order, so long as the modifications of 
normal coordinates and frequencies exist, so it will not be considered here. In 
certain cases where the modifications of normal coordinates and frequencies 
are extremely small or negligible, the anharmonicity may then become very im- 
portant. We do not treat these cases in the present investigation. 

To simplify Eq. (7), it is convenient to introduce the integral expression for the 
delta function [9] 

f N 1 x tt 
6(v,,,,,bo, - v) = d t e x p ( i t A c o ) H e x p { i t [ ( v ~ ' + ~ ) c o  i - (vl + �89 col] } (12) 

i 

where Aco=coob--co. hco,b is the energy difference between the two electronic 
states and for the cases of light absorption, it is positive. Substituting Eq. (9) 
to Eq. (12) into Eq. (7), we find, oo 

kb~,(v ) = 4rcZv ]RabJ z ~ d t  exp(it Aco) I t  Li(t) (13) 
3 h a c  ~ i 

- ao 
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where 

�9 ho)'i I ( h~o'~\-] Z,(t)= ~ ( s l n h  hog~)l(X.~,,.lXbv~)lZex p it('v','+�89189 i tog;+~-~)J  (14) 
v~'~\ 2kT  f 

By using the Mehler's formula [13]�9 

exp [ - (v + �89 t] x~(O) X~(Q') 

= fl(2n sinh t)- �89 exp - (Q + Q,)2 tanh 2 + (Q - Q,)Z coth (15) 

where fl = (og/h) ~ Eq. (14) can be written as: 

P i P i  S , t.t. 2 [- . 
2 k T  t-i /(O: + ~,i,)2 tanh /h 

L~(t) = (4n2 sinh2'~ sinh#7) ~ dQ~ dQ~ exp - 4 [_'~' 2 

coth -J-q- (Q'i+Q'i)2tanh +(Q'i-~)'~)2coth (16) 

h~o'i ,, 
where 2~= itco'i+ ~ - - ,  and #1 -- - i to~ ' .  The integral in Eq. (16) is elementary 

and has been carried out [5, 14]. The result is: 

, , , .  h a ) ; (  2'~ tanh _ ~ )  -~ 2flifli slnh 2--- ~ -  fl'i 2 tanh ~ -  +fl,[2 
Li(t ) = 

(sinh 2'i sinh #i') ~ (fl,i2 coth ~k ,2 i +fli coth @ )  ~ (17) 

t~i r i  ~.--i - - w L '  
exp ~ -- - -- -7-- , �9 

fl~: coth @ + fl~,2 coth 

Substitution of Eq. (17) into Eq. (13) gives" 

kb~a(V).~ 4g2V IRabl 2 exp(i t  Ae~) . . . .  3,oc (,, coth  
- - O 9  

(18) 

2 k T  ,.~ ,.__LC,..~_--i___L _ 

�9 . , a t 2  # i  , 2  ~ i  (smh2~ slnhl~i') ~ exp fli coth @ + fli coth " " 

Except for the assumption of Eq�9 (10) that the same classification for normal 
coordinates can be applied to the two different electronic states, Eq. (18) is a 
general result. 

One useful relation [15] can be obtained by integrating Eq. (7) over frequency v: 

f kb_~(v)dv= 47~2 Pbv,  l < O a v , , l O b v , ) ]  2 . (19) 3hac lift"hI2 )-' v,~,, be 
v" v"  
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Replacing v. v,,' b v' by an average v., b and using the relation, ~ Pb v" [(O. r I O b v' )[2 = 1 

(Appendix), we find f 4n2 ~ 2 v' v" 
kb_~a(V ) dv = 3ha~- IR"bl v"'b (20) 

3 
4 g v m  

Introducing the oscillator strength, f = 3h I(~z 1~1 ~1)12, Eq. (20) becomes 

f k b ~ ( v ) d v -  neZ f.b (21) 
mac 

The integration in Eq. (18) can not be carried out without introducing approxi- 
mations. We assume that the modifications of normal frequencies and coordi- 
nates between the two electronic states are small, i.e., Qi and fl}2(d' i' -d~) 2 are 
small and have the same order of magnitude. To this approximation, we have [5], 

fl ,.2/~:,'2(d,'.,' __ d~)2 
l Wl" \- ' l  

'i 2 coth + fl~,z coth (22) 

o,, 
= -21 P ' i R ' 2 [ A " - - d i )  coth 2--- ~ -  - csch 2kTJJ  

fl;,2 coth ~ + fl;2 coth fl'i 2 tanh + fl;,z tanh 

and hcol 
sinh - -  

2kT  
_ / h~o'~ ) 

sinh t ~  + �89 

Combining Eq. (22)-(24) with Eq. 
coefficient as: 

k b_~.(v) - 

t2 . 2  " 2 1 t 4fli fl~ sm h ~(2~ + #i') 
sinh/~' sinh 2~ 

= exp itQico ~ cot . 

(23) 

(24) 

(18), we obtain the molecular absorption 

4E2V [/~ab[ 2 dtexp i A c o t - - ~ -  i 2kT  i 3hac Qico'i coth �89 2 flti2 

[ ha)~ h~ (i ho)~']~ 
(di'-d3 2 coth 2kr csch2~-c~ ta);+T~-JJJ 

(25) 

Next we define c5' and ~' by the following equation: 

n ha) I ( ihco' i "] h~' 
~ 1 t~,2t~,,i  ~vi ~ ' i -  ~.iJa'~2 c s c h ~ c o s  oYit 2 - - k ~ j = S c s c h ~ - c o s ( ~ ' t - ~ ' )  (26) 

N hc~' 
where S = �89 z_,S" ,.~[~'z(d",_i - d'i) 2 and let z = N't - ~' and y = S csch 2--k-T-" Using these 

i 
relations, the molecular absorption coefficient can be expressed as: 

4 / r2V I kb+.(v) = 3 h a c ~  IR~bl 2 exp -- i P ~ ' -  �89 ~ tt'2(d " -  d'i) 2 coth ho~; 
i 'q ,-i 2 k T J  (27) 

~ dz exp(y cosz - iPz) 
- o o  

21 Theoret. chim. Acta (BerL) Vol. 10 
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where P is defined by the equation, 

1 409 � 8 9  ' h boo'i-1 P = c ~ '  - -  - 01ro~ c o t  ( 2 8 )  

The integral in Eq. (25) has been evaluated by Lax [16]. Using his result, we obtain: 

kb-~a(V) = I/~ab]2 exp iP~o'-�89 ~ k T j I , ( y )  (29) 

where Iv(y ) is the Bessel functions of imaginary argument [173; 

1 
~ dx exp(iPx + y cosx). (30) Iv(y) = ~ o 

Eq. (29) gives the molecular absorption coefficient of molecules dissolved in a 
crystalline medium as a function of radiation frequency v, and thus will give the 
shape of the absorption curve for a particular electronic transition. Although the 
above derivation is for the molecular absorption coefficient of molecules dissolved 
in crystalline media, it can be applied to the calculation of the absorption coefficient 
of solute molecules dissolved in liquid media, if we consider the solute molecules 
to librate [4] in a site formed by solvent molecules. Eq. (29) has been applied to 
the systems of Br2 and I2 dissolved in various solvents [18]. 

If we are interested in the shape of absorption curves for an electronic transi- 
tion accompanied by a particular intra-molecular vibrational transition, say 
(b, vk) (a, vk), by repeating the above processes, we obtain: 

kbv~,v~(v)= 47r2v I~.bl2P~v~l<O,=~lOb=~>] 2 dtexp(itAco')[I '  
3hac i 

-oo 

, ,, �9 h~ •i [~tt2 t a n h  2flifli s l n h ~  fl'i 2 tanh ~ -  + ~-i 

+,, 
(31) 

t e x p  

fl'i 2 coth @ + fil '2 eoth 

corresponding to Eq. (18), and 
, h , ~ ' \  

kb~-~"v~(v) = 3hack '  
N , (32) 

I - -  i_ ~ p  RI2~At, exp _ p ' q ~ _  _ 2 ~h hgo~] 
2z_.i ~'~ ~i a0 cot 2 k T J  

N 

corresponding to Eq. (29), where S' = �89 ~ '  ,~i/r -- d'i) 2, 
i 

~ F ~ . ,  ~ g ,  , . ho', n "_ ~,,o~- (v~+ �89 - = §  / and " 

]<O,,~]Ob~>] 2 represents the Franck-Condon factor of the intramolecular 
vibration. 



Band Shape of Absorption and Emission 307 

The shape of emission curves can be discussed in a similar manner and to 
save the space, its discussion will not be produced here. 

3. Discussion 

In our previous investigation [5], an expression has been derived for the 
radiationless transition probability based on the non-stationary character of the 
Born-Oppenheimer approximation, and at low temperatures it can be expressed as: 

S'N __rcco'i' iRi(ab)i 2 exp - 1  vjll'2(cl",--j - ,~j, d32 coth 2 ~  1 %= 
~'  (~"h 3 

i. Se,+ S,, c ( h c o l , ) l  (33) 
F(1 + P+) + F(1 + P~-) exp kT  

where 

Rdab)= --h2 (g)a ~@i qbb) (34) 

and 
1 I ~�89 hcoJ 1 Pi+- - ~" COb"--+ COi' -- j 2kT  . (35) 

F(x) in Eq. (33) respresents the gamma function. From Eq. (33) we can see that 
the radiationless transition probability depends very much on S which in turn 
is related to the modifications of normal coordinates between the two electronic 
states. In view of our lack of knowledge of normal coordinates and frequencies 
of local modes between the two electronic states in which the transition occurs, 
it is difficult to carry out the calculation of the radiationless transition probability 
accurately. From the present investigation, we can see that by measuring the 
absorption coefficient as a function of radiation frequencies v, one can determine 
the transition m o m e n t  Nab from the area of the absorption curve kb._,a(V ) VS V, 

by the relation of Eq. (20), and one can determine S from Eq. (29) or from Eq. (37) 
and Eq. (40) given below. Once the modification of normal coordinates has been 
determined, one can calculate the radiationless transition probability rather 
accurately from Eq. (33). 

hc~' 
At low temperatures where S csch 2-- ~ -  in Eq. (29) is very small, we can use 

the following expansion to approximate the Bessel functions [17]: 

Ip(y)= + (1 +p--~-  + + . -  . (36) 

To the first order approximation for the Bessel functions, Eq. (29) becomes: 

8rc3v 
12 

,-i ,.v~ -w~, coth 2 ~ -  j F(P+ 1) (37) kb--'"(v)-- 3hacN' m, bl exp . f~'2(d" d"l 2 hCOri ~ SP 

In this case the absorption maximum occurs at 

hCO~ 
COmax = co,b + S ~' - �89 ~ ~iCO'i coth - -  

i 2kT  
21" 
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hN' 
At high temperatures where csch ~ is not small and y is larger than unity, 

we can use the assymptotic expansion for the Bessel functions [17]. 

eY { ~ l ( - 1 ) " [ 4 p 2 - 1 ] [ 4 p 2 - 3 2 ] ' " [ 4 p 2 - ( 2 n - 1 ) 2 ] } ( 3 8 )  
Ip(y) = (2~y)~ 1 + n! (8y)" 

If P values are not very small, to a very good approximation, we can replace 
Eq. (38) by [17]: 

Ip(y) = (2ny) exp, - ~-y . (39) 

Substituting Eq. (39) into Eq. (40), we obtain: 

k~_,.(v)-- 8zav i~.bi~ 1 
3hack '  (2roy) ~ 

I p2 PhN' N 
�9 exp y - ~ + 2kT  �89 ~" fl,2 (d'[ - d',) 2 coth he); ] 

i 2kT_]" 

(40) 

N he); 
In this case the absorption maximum occurs at e)max ~--e)ab- 1 Z Oie); coth 

i 2kT  h--' _, o9 ~ h ~ '  
+ Se) ~ csch ~ and Eq. (40) can be expressed in a Gaussian form. 

From the above discussion, one can notice that the broadening is mainly 
caused by a change in normal coordinates of solute molecules plus local environ- 
ment between the two electronic states and that the modification of normal 
frequencies between the two electronic states can at most shift the absorption 
or emission maximum. One can also see that when there is an overlap of two or 
more absorption bands, one can determine S and ~ '  for each electronic transi- 
tion from the absorption curve and hence the absorption coefficient for each 
electronic transition as a function of frequency�9 In this way the oscillator strength 

0.20 / ~ / ~  ',, 
l V~'-, 

, .!/\,, 
f(v) \ \ ' \ \  

o,o / 
i \ \\ �9 

0.00 ~ I  
37200 35700 3/+200 

V (cm-') 
3hac~'kb,,~,,v.(v) 

Fig. 1. f(v)= i<x,o.ixbo.>l= vsv 

atN'= 300crn -1. - -  s=3.-  . . . . . . . .  s=4. - . . . .  s=5. 
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for each electronic transition can be obtained by plotting the absorption coeffi- 
cient of that electronic transition against frequency. To show an application of 
the above derivation, we choose as solute molecules, diatomic molecules with 
co, b = 3 8 0 0 0 c m  -t,  co '=1900cm -1, and co"=1020cm -1. In Fig. 1, we plot 

3hac~'kb~,__,,v,,(v) 
8~2v i/~bl 2 i<s=,,ixb~,>12 against frequency at very low temperatures and at 

various S values for N' = 300 cm-1. It can be seen that both the band width and 
the absorption maximum depends on S. As S increases, the band width increases 
and the absorption maximum shifts toward the longer wavelength. 

0.20 

f(~,) 

0.1o 

0.00 
3h500 

Fig .  2. f(v)= 

at  S = 5 .  - -  

/ i \ \  / / \ \  
. /  \',, 

I I 

35700 37200 
~,(cm 4) 

8~2v1~,o~1 = i<xo, , , ix~o,>l  = v s v  

~ '  = 300 c m  -1. - . . . . . . . .  ~ '  = 200 c m  -1 

Appendix 
To prove that ~,, Pbv' ] ( O d [  Ob~')[ 2=  1, we observe 

V' I)" 

Y Pb~'l<o="lObv'>l 2= F~ slnh 2--- ~ -  exp , 1 h~o'~ 
V' V" V' Y" i 

~ d  - " X* -"  - '  �9 Qi dQ, X&.(Q,* ) =r(Q~) XbdQ.)' x~v~(Q~) J 

Making use of the Mehler's formula, we find 

N 2fl'ifl ~' sinh h~~ 
2kT ; f  dQ~ dQ~ Z Pbv'](Oav"]Obv')] 2 = Lim l--[ ( h ( o i ~  

~,.,, t-~o i 4n2sinhtsinh kT ] -oo 

�9 exp - 2 ~ -  [(Q' i' + (7,[)2 tanh ~ -  + (Q'i' - (7'i') 2coth 

fl~2 I(Q, i + (7,i)2 tanh hc~ ho)~ 7)  
4 ~ + (Q' - (7;)2 coth 2~T-J j~ .  

(A-l) 

(A-2) 
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I n t e g r a t i o n  of  Eq.  (A-2) g ives  

N 2fl'~fl~' s inh  2k--T- 
! 

~,~,, �9 / '  t co i \ 

_ 1  

t ,z h~ t~ "z coth ~- fli c o t h ~  -} ' r i  

hol t )~ 
ffi 2 tanh ~ + fl'i '2 tanh ~- 

(A-3) 

I - -  ( /~'2/~"2(d" A']2 ~ i l  exp  . . . . .  t - " 

fiti 2 co th  2 + flti'2 c o t h  

By se t t ing  t ~ 0, it  c an  eas i ly  be  s h o w n  t h a t  

~, Pbr l(Oav"[Obv')[ z = 1. 
v' v,t 
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